S620 - Introduction To Statistical Theory - Homework 7
 Enrique Areyan
 April 24, 2014

6.2 (ii) Find a minimal sufficient statistic for θ based on an independent sample of size n from the uniform distribution on $(\theta-1, \theta+1)$.

Solution: The pdf of a single uniform r.v. for the parameter θ is $f\left(X_{1} ; \theta\right)=\frac{1}{\theta+1-(\theta-1)}=\frac{1}{2}$, i.e.,

$$
f\left(x_{1} ; \theta\right)= \begin{cases}\frac{1}{2} & \text { if } \theta-1<x_{1}<\theta+1 \\ 0 & \text { otherwise }\end{cases}
$$

The joint pdf for $X_{1}, \ldots, X_{n} \sim \operatorname{Uniform}(\theta-1, \theta+1)$ is the product of the single pdfs, i.e., let $X=X_{1}, \ldots, X_{n}$

$$
f(X ; \theta)= \begin{cases}2^{-n} & \text { if } \theta-1<x_{1}, x_{2}, \ldots, x_{n}<\theta+1 \\ 0 & \text { otherwise }\end{cases}
$$

This pdf can be written as follows:

$$
f(X ; \theta)=2^{-n} \cdot \begin{cases}1 & \text { if } \theta-1<\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \text { and } \max \left(x_{1}, x_{2}, \ldots, x_{n}\right)<\theta+1 \\ 0 & \text { otherwise }\end{cases}
$$

Letting $h(x)=2^{-n}, t(x)=\left(\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, \max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)$. Then $f(X ; \theta)=h(x) g(t(x), \theta)$, and thus by the factorization theorem, $t(x)$ is a sufficient statistic. Moreover, $t(x)$ is also minimal. Let us check that this is the case by using Theorem 6.1
(\Rightarrow) Suppose that $t(x)=t(y)$. Then, for any choice of θ_{1}, θ_{2} :

$$
\Lambda_{x}\left(\theta_{1}, \theta_{2}\right)=\frac{f\left(X ; \theta_{1}\right)}{f\left(X ; \theta_{2}\right)}=\frac{h(x) g\left(t(x), \theta_{1}\right)}{h(x) g\left(t(x), \theta_{2}\right)}=\frac{g\left(t(x), \theta_{1}\right)}{g\left(t(x), \theta_{2}\right)}=\frac{g\left(t(y), \theta_{1}\right)}{g\left(t(y), \theta_{2}\right)}=\frac{h(y) g\left(t(y), \theta_{1}\right)}{h(y) g\left(t(y), \theta_{2}\right)}=\Lambda_{y}\left(\theta_{1}, \theta_{2}\right)
$$

(\Leftarrow) For this direction, let us prove the contrapositive. Suppose that $t(x) \neq t(y)$. We want to show that there exists θ_{1}, θ_{2} such that $\Lambda_{x}\left(\theta_{1}, \theta_{2}\right) \neq \Lambda_{y}\left(\theta_{1}, \theta_{2}\right)$ for all θ_{1}, θ_{2}. Pick $\theta_{2}=\theta_{1}+1$, then if $\Lambda_{x}\left(\theta_{1}, \theta_{2}\right)=1$ it means that $g\left(t(x) ; \theta_{1}\right)=g\left(t(x) ; \theta_{2}\right)=1$, but since $t(x) \neq t(y)$ we have that $\min \left(X_{i}\right) \neq \min \left(Y_{i}\right)$ and $\max \left(X_{i}\right) \neq \max \left(Y_{i}\right)$ and by our choice of θ_{2} it follows that $g\left(t(x) ; \theta_{1}\right)=0$ and so $\Lambda_{y}\left(\theta_{1}, \theta_{2}\right)=0 \neq$ $\Lambda_{x}\left(\theta_{1}, \theta_{2}\right)$
6.3 Independent factory-produced items are packed in boxes each containing k items. The probability that an item is in working order is $\theta, 0<\theta<1$. A sample of n boxes are chosen for testing, and X_{i}, the number of working items in the i th box, is noted. Thus X_{1}, \ldots, X_{n} are a sample from a binomial distribution, $\operatorname{Bin}(k, \theta)$, with index k and parameter θ. It is required to estimate the probability, θ^{k}, that all items in a box are in working order. Find the minimum variance unbiased estimator, justifying your answer.

Solution: Let us find the MVU estimator using Theorem 6.3. First, let us find a sufficient statistic for θ. The joint mass function is:
$f(X ; \theta)=f\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=\binom{k}{x_{1}} \theta^{x_{1}}(1-\theta)^{k-x_{1}} \ldots\binom{k}{x_{n}} \theta^{x_{n}}(1-\theta)^{k-x_{n}}=\left\{\prod_{i=1}^{n}\binom{k}{x_{i}}\right\} \theta^{\sum_{i=1}^{n} x_{i}}(1-\theta)^{n k-\sum_{i=1}^{n} x_{i}}$
Letting $h(x)=\left\{\prod_{i=1}^{n}\binom{k}{x_{i}}\right\}$ and $t(x)=\sum_{i=1}^{n} x_{i}$, we find that $f(X ; \theta)=h(x) g(t(x) ; \theta)$ so that, by the factorization theorem, $t(x)$ is a sufficient statistic. Now we need a sufficient statistic for θ^{k}. Consider the random variable I (indicator):

$$
I\left(X_{1}\right)= \begin{cases}1 & \text { if } X_{1}=k \\ 0 & \text { otherwise }\end{cases}
$$

Then, $E_{\theta}[I]=1 \cdot \operatorname{Pr}\left\{X_{1}=k\right\}+0 \cdot \operatorname{Pr}\left\{X_{1} \neq k\right\}=\operatorname{Pr}\left\{X_{1}=k\right\}=\binom{k}{k} \theta^{k}(1-\theta)^{k-k}=\theta^{k}$, so that I is an unbiased estimator for θ^{k}. Finally, by Theorem 6.3, the following estimator is the minimum variance unbiased estimator:
$\chi(T)=E[I \mid T(X)=t]=E\left[I \mid \sum_{i=1}^{n} x_{i}=t\right]=1 \cdot \operatorname{Pr}\left\{I=1 \mid \sum_{i=1}^{n} x_{i}=t\right\}+0 \cdot \operatorname{Pr}\left\{I=0 \mid \sum_{i=1}^{n} x_{i}=t\right\}=\operatorname{Pr}\left\{X_{1}=k \mid \sum_{i=1}^{n} x_{i}=t\right\}$

Hence, the distribution of $\chi(T)$ can be computed as follow:

$$
\begin{array}{rlr}
\chi(T=t) & =\operatorname{Pr}\left\{X_{1}=k \mid \sum_{i=1}^{n} x_{i}=t\right\} & \text { definition of } \chi(T) \text { above } \\
& =\frac{\operatorname{Pr}\left\{X_{1}=k, \sum_{i=1}^{n} x_{i}=t\right\}}{\operatorname{Pr}\left\{\sum_{i=1}^{n} x_{i}=t\right\}} & \text { conditional prob. } \\
& =\frac{\operatorname{Pr}\left\{\sum_{i=1}^{n} x_{i}=t \mid X_{1}=k\right\} \operatorname{Pr}\left\{X_{1}=k\right\}}{\operatorname{Pr}\left\{\sum_{i=1}^{n} x_{i}=t\right\}} & \text { conditional prob. } \\
& =\frac{\operatorname{Pr}\left\{\sum_{i=2}^{n} x_{i}=t-k\right\} \operatorname{Pr}\left\{X_{1}=k\right\}}{\operatorname{Pr}\left\{\sum_{i=1}^{n} x_{i}=t\right\}} & \text { by the conditional prob. }(t \geq k)
\end{array}
$$

Note that since $X_{1}, \ldots, X_{n} \sim \operatorname{Bin}(k, \theta)$, we have that $\sum_{i=1}^{n} x_{i} \sim \operatorname{Bin}(n k, \theta)$. Hence,

$$
\chi(T=t)=\frac{\operatorname{Pr}\left\{\sum_{i=2}^{n} x_{i}=t-k\right\} \operatorname{Pr}\left\{X_{1}=k\right\}}{\operatorname{Pr}\left\{\sum_{i=1}^{n} x_{i}=t\right\}}=\frac{\binom{k n-k}{t-k} \theta^{t-k}(1-\theta)^{k n-k-(t-k)}\binom{k n}{k} \theta^{k}(1-\theta)^{k-k}}{\binom{k n}{t} \theta^{t}(1-\theta)^{k n-t}}=\frac{\binom{k n-k}{t-k}}{\binom{k n}{t}}
$$

Hence, the UMV unbiased estimator is $\chi(T)=\frac{\binom{k n-k}{t-k}}{\binom{k n}{t}}$. To complete our reasoning, we need only to prove that $t(x)$ is complete:

Let $\theta \in(0,1)$ and g be a real function. Suppose that $E_{\theta} g(T)=0$. Then, by the law of the unconscious statistician:

$$
\sum_{i=0}^{n k} g(i) \cdot P_{\theta}(T=i)=0
$$

Since $0<\theta<1$ and $T \sim \operatorname{Bin}(n k, \theta)$, it must be the case that $P_{\theta}(T=i)>0$ for $0 \leq i \leq n k$. Hence, for the above equality to hold, we must have that: $g(i)=0$ for all i, or equivalently, $\operatorname{Pr}_{\theta}\{g(T)=0\}=1$ for all θ. Thus, T is complete.

